top of page
Search
Writer's pictureDr. Fredrick Peters

DARK CHOCOLATE AND GREEN TEA COMPOUNDS BLOCK ACTION OF COVID ENZYME


The enzyme whose function is blocked is the main protease in SARS-COV2. The virus requires this enzyme to replicate. If this main protease is blocked, the virus cannot survive.


Flavan-3-ols and proanthocyanidins (PAs) are two groups of plant flavonoids. They commonly exist in fruits, food products, and beverages, such as grape, strawberry, persimmon, cranberry, blueberry, cacao nuts, chocolate, green tea, and wines (Monagas et al., 2003). Common flavan-3-ol aglycones in these plant products include (–)-epicatechin (EC), (+)-catechin (CA), (–)-epigallocatechin (EGC), (+)-gallocatechin (GC), (–)-epiafzelechin (EAF), and (+)-afzelechin (AF) (Figure 2; Xie and Dixon, 2005). Common flavan-3-ol gallates include (–)-epicatechin-3-O-gallate (ECG), (+)-catechin-3-O-gallate (CAG), (–)-gallatechin-3-O-gallate (GCG), (–)-epigallocatechin-3-O-galloate (EGCG), which are highly abundant in green tea.(Dai X. et al., 2020; Wang P. et al., 2020)


Multiple compounds from these two groups, such as CA, EPC, EGC, EGCG, procyanidin B2, and procyanidin A2, have been shown to have antiviral function (de Bruyne et al., 1999; Iwasawa et al., 2009), antibacterial activity (Molan et al., 2001; Howell et al., 2005), anticancer (Ohata et al., 2005; Suganuma et al., 2011), anti-cardiovascular diseases (Loke et al., 2008; Panneerselvam et al., 2010; MacRae et al., 2019), and anti-aging diseases (Levites et al., 2003; Li et al., 2004; Weinreb et al., 2004). In particular, the anti-viral activity suggests that flavan-3-ols and PAs are appropriate targets for screening potential anti-SARS-Cov-2 medicines.


Both docking simulation and in vitro assays showed that the stereo configurations, galloylation, and oligomeric types of flavan-3-ols affected the ligand-protein binding features and inhibitory activity.


In summary, although these natural extracts have not been tested for the inhibitory efficacy in animals and humans, based on their inhibitory activity in vitro, we propose that an increased consumption of these common products can enhance preventing against SARS-Cov-2 and improving the COVID-19.



Conclusion, both docking simulation and in vitro assay showed that (–)-catechin-3-O-gallate (7), (–)-epicatechin-3-O-gallate (8), (–)-gallocatechin-3-O-gallate (9), and (–)-epigallocatechin-3-O-gallate (10), procyanidin B1 (11) and B2 (12) inhibited the Mpro activity of SARS-Cov-2. Moreover, these compound-rich extracts of green tea, muscadine grape, cacao, and dark chocolate also inhibited the Mpro activity. Given that there is not an effective medicine for the treatment of COVID-19 and not a vaccine for preventing against the SARS-Cov-2 infection and transmission, these data recommend that these nutraceutical compounds and extracts of green tea, grape, and cacao can be utilized to interfere the devastation of SARS-Cov-2.


 

References

Akagi, T., Ikegami, A., Suzuki, Y., Yoshida, J., Yamada, M., Sato, A., et al. (2009). Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta 230, 899–915. doi: 10.1007/s00425-009-0991-6 PubMed Abstract | CrossRef Full Text | Google Scholar

Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., et al. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 382, 1787–1799. doi: 10.1056/NEJMc2008043 PubMed Abstract | CrossRef Full Text | Google Scholar

Chavarria-Miró, G., Anfruns-Estrada, E., Guix, S., Paraira, M., Galofré, B, Sáanchez, G., et al. (2020). Sentinel surveillance of SARS-CoV-2 in wastewater anticipates the occurrence of COVID-19 cases. medRxiv. [Preprint]. doi: 10.1101/2020.06.13.20129627 PubMed Abstract | CrossRef Full Text | Google Scholar

Chen, L., Gui, C., Luo, X., Yang, Q., Günther, S., Scandella, E., et al. (2005). Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol. 79, 7095–7103. doi: 10.1128/JVI.79.11.7095-7103.2005 PubMed Abstract | CrossRef Full Text | Google Scholar

Colson, P., Rolain, J.-M., and Raoult, D. (2020). Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int. J. Antimicrob. Agents 55, 105923–105923. doi: 10.1016/j.ijantimicag.2020.105923 CrossRef Full Text | Google Scholar

Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., et al. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science 368, 1331–1335. doi: 10.1126/science.abb4489 PubMed Abstract | CrossRef Full Text | Google Scholar

Dai, X., Liu, Y., Zhuang, J., Yao, S., Liu, L., Jiang, X., et al. (2020). Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytol. 226, 1104–1116. doi: 10.1111/nph.16425 PubMed Abstract | CrossRef Full Text | Google Scholar

de Bruyne, T., Pieters, L., Witvrouw, M., de Clercq, E., vanden Berghe, D., and Vlietinck, A. J. (1999). Biological evaluation of proanthocyanidin dimers and related polyphenols. J. Nat. Prod. 62, 954–958. doi: 10.1021/np980481o PubMed Abstract | CrossRef Full Text | Google Scholar

Fischer, T. C., Mirbeth, B., Rentsch, J., Sutter, C., Ring, L., Flachowsky, H., et al. (2014). Premature and ectopic anthocyanin formation by silencing of anthocyanidin reductase in strawberry (Fragaria x ananassa). New Phytol. 201, 440–451. doi: 10.1111/nph.12528 PubMed Abstract | CrossRef Full Text | Google Scholar

Foo, L. Y., Lu, Y., Howell, A. B., and Vorsa, N. (2000a). The structure of cranberry proanthocyanidins which inhibit adherence of uropathogenic P-fimbriated Escherichia coli in vitro. Phytochemistry 54, 173–181 doi: 10.1016/S0031-9422(99)00573-7 PubMed Abstract | CrossRef Full Text | Google Scholar

Foo, L. Y., Lu, Y., Howell, A. B., and Vorsa, N. (2000b). A-type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J. Nat. Prod. 63, 1225–1228 doi: 10.1021/np000128u PubMed Abstract | CrossRef Full Text | Google Scholar

Fossen, T., Rayyan, S., and Andersen, O. M. (2004). Dimeric anthocyanins from strawberry (Fragaria ananassa) consisting of pelargonidin 3-glucoside covalently linked to four flavan-3-ols. Phytochemistry 65, 1421–1428. doi: 10.1016/j.phytochem.2004.05.003 PubMed Abstract | CrossRef Full Text | Google Scholar

Ghosh, R., Chakraborty, A., Biswas, A., and Chowdhuri, S. (2020). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors - an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn. 1–13. doi: 10.1080/07391102.2020.1779818 PubMed Abstract | CrossRef Full Text | Google Scholar

Gu, L., Kelm, M., Hammerstone, J. F., Beecher, G., Cunningham, D., AVAnnozzi, S., et al. (2002). Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J. Agric. Food Chem. 50, 4852–4860 doi: 10.1021/jf020214v PubMed Abstract | CrossRef Full Text | Google Scholar

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., et al. (2020). Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270. doi: 10.1056/NEJMc2008597 CrossRef Full Text | Google Scholar

Hoffmann, M., Mösbauer, K., Hofmann-Winkler, H., Kaul, A., Kleine-Weber, H., Krüger, N., et al. (2020). Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 585, 588–590. doi: 10.1038/s41586-020-2575-3 PubMed Abstract | CrossRef Full Text | Google Scholar

Howell, A. B., Reed, J. D., Krueger, C. G., Winterbottom, R., Cunningham, D. G., and Leahy, M. (2005). A-type cranberry proanthocyanidins and uropathogenic bacterial anti-adhesion activity. Phytochemistry 66, 2281–2291 doi: 10.1016/j.phytochem.2005.05.022 PubMed Abstract | CrossRef Full Text | Google Scholar

Iacopini, P., Baldi, M., Storchi, P., and Sebastiani, L. (2008). Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J. Food Compos. Anal. 21, 589–598. doi: 10.1016/j.jfca.2008.03.011 CrossRef Full Text | Google Scholar

Iwasawa, A., Niwano, Y., Mokudai, T., and Kohno, M. (2009). Antiviral activity of proanthocyanidin against feline calicivirus used as a surrogate for noroviruses, and coxsackievirus used as a representative enteric virus. Biocontrol. Sci. 14, 107–111. doi: 10.4265/bio.14.107 PubMed Abstract | CrossRef Full Text | Google Scholar

Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., et al. (2020b). Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol. 27, 529–532. doi: 10.1038/s41594-020-0440-6 PubMed Abstract | CrossRef Full Text | Google Scholar

Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., et al. (2020a). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293. doi: 10.1038/s41586-020-2223-y PubMed Abstract | CrossRef Full Text

Khan, S. U., and Htar, T.-T. (2020). Deciphering the binding mechanism of Dexamethasone against SARS-CoV-2 main protease: computational molecular modelling approach. ChemRxivorg. [Preprint]. doi: 10.26434/chemrxiv.12517535 CrossRef Full Text | Google Scholar

Lamers, M. M., Beumer, J., van der Vaart, J., Knoops, K., Puschhof, J., Breugem, T. I., et al. (2020). SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54. doi: 10.1126/science.abc1669 PubMed Abstract | CrossRef Full Text | Google Scholar

Levites, Y., Amit, T., Mandel, S., and Youdim, M. B. H. (2003). Neuroprotection and neurorescue against Aβtoxicity and PKC-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (-)- epigallocatechin-3-gallate. Faseb J. 17, 952–954. doi: 10.1096/fj.02-0881fje CrossRef Full Text | Google Scholar

Li, M.-H., Jang, J.-H., Sun, B., and Surh, Y.-J. (2004). Protective effects of oligomers of grape seed polyphenols against beta-amyloid-induced oxidative cell death. Ann. NY Acad. Sci. 1030, 317–329. doi: 10.1196/annals.1329.040 PubMed Abstract | CrossRef Full Text | Google Scholar

Liu, Y. J., Gao, L. P., Liu, L., Yang, Q., Lu, Z. W., Nie, Z. Y., et al. (2012). Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J. Biol. Chem. 287, 44406–44417. doi: 10.1074/jbc.M112.403071 PubMed Abstract | CrossRef Full Text | Google Scholar

Loke, W. M., Hodgson, J. M., Proudfoot, J. M., McKinley, A. J., Puddey, I. B., and Croft, K. D. (2008). Pure dietary flavonoids quercetin and (-)-epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr. 88, 1018–1025 doi: 10.1093/ajcn/88.4.1018 PubMed Abstract | CrossRef Full Text | Google Scholar

Lopez-Serrano, M., and Barcelo, A. R. (1997). Kinetic properties of (+)-catechin oxidation by a basic peroxidase ioenzyme from strawberries. J. Food Sci. 62, 676–723. doi: 10.1111/j.1365-2621.1997.tb15433.x CrossRef Full Text | Google Scholar

MacRae, K., Connolly, K., Vella, R., and Fenning, A. (2019). Epicatechin's cardiovascular protective effects are mediated via opioid receptors and nitric oxide. Eur. J. Nutr. 58, 515–527. doi: 10.1007/s00394-018-1650-0 PubMed Abstract | CrossRef Full Text | Google Scholar

Miller, K. B., Hurst, W. J., Flannigan, N., Ou, B. X., Lee, C. Y., Smith, N., et al. (2009). Survey of commercially available chocolate- and cocoa-containing products in the United States. 2. comparison of Flavan-3-ol content with nonfat cocoa solids, total polyphenols, and percent cacao. J. Agric. Food Chem. 57, 9169–9180. doi: 10.1021/jf901821x PubMed Abstract | CrossRef Full Text | Google Scholar

Molan, A. L., Attwood, G. T., Min, B. R., and McNabb, W. C. (2001). The effect of condensed tannins from Lotus pedunculatus and Lotus corniculatus on the growth of proteolytic rumen bacteria in vitro and their possible mode of action. Can. J. Microbiol. 47, 626–633. doi: 10.1139/cjm-47-7-626 PubMed Abstract | CrossRef Full Text | Google Scholar

Monagas, M., Gomez, C. C., Bartolome, B., Laureano, O., and da Ricardo, S. J. M. (2003). Monomeric, oligomeric, and polymeric flavan-3-ol composition of wines and grapes from Vitis vinifera L. cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem. 51, 6475–6481 doi: 10.1021/jf030325+ CrossRef Full Text | Google Scholar

Murphy, K. J., Chronopoulos, A. K., Singh, I., Francis, M. A., Moriarty, H., Pike, M. J., et al. (2003). Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 77, 1466–1473 doi: 10.1093/ajcn/77.6.1466 CrossRef Full Text | Google Scholar

Ohata, M., Koyama, Y., Suzuki, T., Hayakawa, S., Saeki, K., Nakamura, Y., et al. (2005). Effects of tea constituents on cell cycle progression of human leukemia U937 cells. Biomed. Res. 26, 1–7. doi: 10.2220/biomedres.26.1 CrossRef Full Text | Google Scholar

Panneerselvam, M., Tsutsumi, Y. M., Bonds, J. A., Horikawa, Y. T., Saldana, M., Dalton, N. D., et al. (2010). Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation. Am. J. Physiol. Heart Circ. Physiol. 299, H1604–H1609. doi: 10.1152/ajpheart.00073.2010 PubMed Abstract | CrossRef Full Text | Google Scholar

Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., and Jung, S.-H. (2016). An overview of severe acute respiratory syndrome–coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem. 59, 6595–6628. doi: 10.1021/acs.jmedchem.5b01461 PubMed Abstract | CrossRef Full Text | Google Scholar

Prasanth, D. S. N. B. K., Murahari, M., Chandramohan, V., Panda, S. P., Atmakuri, L. R., and Guntupalli, C. (2020). In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn. 1–15. doi: 10.1080/07391102.2020.1779129 PubMed Abstract | CrossRef Full Text | Google Scholar

Rousserie, P., Rabot, A., and Geny-Denis, L. (2019). From flavanols biosynthesis to wine tannins: what place for grape seeds? J. Agric. Food Chem. 67, 1325–1343. doi: 10.1021/acs.jafc.8b05768 PubMed Abstract | CrossRef Full Text | Google Scholar

Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., and Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19): a review. JAMA 323, 1824–1836. doi: 10.1001/jama.2020.6019 PubMed Abstract | CrossRef Full Text | Google Scholar

Schewe, T., Kuhn, H., and Sies, H. (2002). Flavonoids of cocoa inhibit recombinant human 5-lipoxygenase. J. Nutr. 132, 1825–1829 doi: 10.1093/jn/132.7.1825 PubMed Abstract | CrossRef Full Text | Google Scholar

Schewe, T., Sadik, C., Klotz, L. O., Yoshimoto, T., Kuhn, H., and Sies, H. (2001). Polyphenols of cocoa: inhibition of mammalian 15-lipoxygenase. Biol. Chem. 382, 1687–1696 doi: 10.1515/BC.2001.204 PubMed Abstract | CrossRef Full Text | Google Scholar

Sehailia, M., and Chemat, S. (2020). Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19. J. Biomol. Struct. Dynamics. doi: 10.1080/07391102.2020.1796809. [Epub ahead of print]. PubMed Abstract | CrossRef Full Text | Google Scholar

Selvaraj, V., Dapaah-Afriyie, K., Finn, A., and Flanigan, T. P. (2020). Short-term dexamethasone in Sars-CoV-2 patients. R I Med. J. 103, 39–43. PubMed Abstract | Google Scholar

Serafini, M., Bugianesi, R., Maiani, G., Valtuena, S., de Santis, S., and Crozier, A. (2003). Plasma antioxidants from chocolate. Nature 424:1013. doi: 10.1038/4241013a PubMed Abstract | CrossRef Full Text | Google Scholar

Suganuma, M., Saha, A., and Fujiki, H. (2011). New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 102, 317–323. doi: 10.1111/j.1349-7006.2010.01805.x PubMed Abstract | CrossRef Full Text | Google Scholar

Takahashi, T., Kamiya, T., Hasegawa, A., and Yokoo, Y. (1999). Procyanidin oligomers selectively and intensively promote proliferation of mouse hair epithelial cells in vitro and activate hair follicle growth in vivo. J. Invest. Dermatol. 112, 310–316. doi: 10.1046/j.1523-1747.1999.00532.x PubMed Abstract | CrossRef Full Text | Google Scholar

van Doremalen, N., Bushmaker, T., Morris, D. H., Holbrook, M. G., Gamble, A., Williamson, B. N., et al. (2020). Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl. J. Med. 382, 1564–1567. doi: 10.1056/NEJMc2004973 PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, C., Horby, P. W., Hayden, F. G., and Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. Lancet 395, 470–473. doi: 10.1016/S0140-6736(20)30185-9 PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. doi: 10.1038/s41422-020-0282-0 PubMed Abstract | CrossRef Full Text | Google Scholar

Wang, P., Liu, Y., Zhang, L., Wang, W., Hou, H., Zhao, Y., et al. (2020). Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. Plant J. 101, 18–36. doi: 10.1111/tpj.14515 PubMed Abstract | CrossRef Full Text | Google Scholar

Weinreb, O., Mandel, S., Amit, T., and Youdim, M. B. H. (2004). Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J. Nutr. Biochem. 15, 506–516 doi: 10.1016/j.jnutbio.2004.05.002 PubMed Abstract | CrossRef Full Text | Google Scholar

World Health Organization (2020a). Statement on the Second Meeting of the International Health Regulations (2005) Emergency Committee Regarding the Outbreak of Novel Coronavirus (2019-nCoV). Geneva: World Health Organization.

World Health Organization (2020b). WHO Director-General's Opening Remarks at the Media Briefing on COVID-19 - 11 March 2020. World Health Organization Geneva: Switzerland.

Wu, Y.-C., Chen, C.-S., and Chan, Y.-J. (2020). The outbreak of COVID-19: an overview. J. Chin. Med. Assoc. 83, 217–220. doi: 10.1097/JCMA.0000000000000270 PubMed Abstract | CrossRef Full Text | Google Scholar

Xiao, F., Tang, M., Zheng, X., Liu, Y., Li, X., and Shan, H. (2020). Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology 158, 1831.e3–1833.e3. doi: 10.1053/j.gastro.2020.02.055 PubMed Abstract | CrossRef Full Text | Google Scholar

Xie, D.-Y., and Dixon, R. A. (2005). Proanthocyanidin biosynthesis - still more questions than answers? Phytochemistry 66, 2127–2144. doi: 10.1016/j.phytochem.2005.01.008 PubMed Abstract | CrossRef Full Text | Google Scholar

Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., et al. (2008). Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. J. Virol. 82, 2515–2527. doi: 10.1128/JVI.02114-07 PubMed Abstract | CrossRef Full Text | Google Scholar

Yuzuak, S., Ballington, J., and Xie, D. Y. (2018). HPLC-qTOE-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites 8:57. doi: 10.3390/metabo8040057 PubMed Abstract | CrossRef Full Text | Google Scholar

Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., et al. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 368, 409–412. doi: 10.1126/science.abb3405 PubMed Abstract | CrossRef Full Text | Google Scholar

Zhao, L., Jiang, X. L., Qian, Y. M., Wang, P. Q., Xie, D. Y., Gao, L. P., et al. (2017). Metabolic characterization of the anthocyanidin reductase pathway involved in the biosynthesis of Flavan-3-ols in elite Shuchazao Tea (Camellia sinensis) cultivar in the field. Molecules 22:21. doi: 10.3390/molecules22122241 PubMed Abstract | CrossRef Full Text | Google Scholar

Zhu, Y., Peng, Q. Z., Li, K. G., and Xie, D. Y. (2014). Molecular cloning and functional characterization of the anthocyanidin reductase gene from Vitis bellula. Planta 240, 381–398. doi: 10.1007/s00425-014-2094-2


Adapted from: https://www.frontiersin.org/articles/10.3389/fpls.2020.601316/full

0 comments

Recent Posts

See All

留言


bottom of page